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Abstract— We propose a collaborative teleoperation algo-
rithm which utilizes haptic force feedback to guide users
around oncoming obstacles while accounting for non-holonomic
constraints. The proposed algorithm predicts the user’s goal,
plans a path using a modified RRT* algorithm to the predicted
goal, and provides haptic guidance to the path and away from
obstacles when the user is in an unsafe pose. We show that
the vehicle cannot collide with obstacles under the proposed
algorithm following the haptic commands. We assess the per-
formance of our algorithm with a virtual pilot in simulations
and hardware experiments, demonstrating its ability to prevent
collisions while reaching the goal location. Additionally, we
demonstrate human-in-the-loop navigation with a Geomagic
Touch haptic device providing force feedback to the user. These
simulations and experiments show that the proposed haptic
guidance system is a useful and effective tool for co-navigation
of non-holonomic vehicles via teleoperation.

I. INTRODUCTION

Robots and automated technologies continue to integrate
into our everyday life, from robotic vacuums to delivery
drones. To date, most robots serve human needs by design,
but we could accomplish so much more if we program them
to work with us as teammates. Many robot control schemes
do not truly collaborate with humans, nor do they take
advantage of humans’ sophisticated autonomy. We envision
a collaborative personal mobility platform where a human
user is responsible for high-level decision-making, while
the mobility platform handles collision avoidance and route
planning suggestions. Haptic feedback provides a natural
communication mechanism with the human user, as haptic
feedback gives interpretable cues about the autonomous
system’s intent while minimizing the additional cognitive
load of the task. Such a mobility platform would be useful
for personal transportation, such as autonomous wheelchairs,
as well as service and transportation vehicles.

Our approach is also relevant to collaborative teleoperation
and co-navigation tasks. Robotic teleoperation is a popular
method for exploring remote environments, particularly when
conditions are unsafe or impossible for human exploration.
An inherent difficulty with teleoperation is the challenge
of perception; classic teleoperation provides a narrow, two-
dimensional field of view with no haptic feel of the envi-
ronment [1], [2]. Shared autonomy can guarantee collision
avoidance but limits the human’s control of the robot [3].
These systems may augment known paths to reduce risk [4],
predict the human intent for parallel autonomy [5], or give
the user a choice between safe RRT*-generated paths [6].
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Fig. 1. (a) The Geomagic Touch, and experimental setup with the robot
and projected environment. (b) Sample experimental results for a human
operator, with arrows indicating force feedback magnitude and direction.

While shared autonomy reduces human control, a haptics-
based collision avoidance system, known as haptic shared
autonomy [7], [8], allows the human operator to maintain full
control during teleoperation, while assisting them in collision
avoidance. A collaborative haptic guidance system must
assist the user in both collision avoidance and navigation
to their goal. To minimize the cognitive load to the human
user, the system should only apply haptic feedback where
necessary and account for any constraints of the vehicle. In
this paper, we propose such a haptic guidance system for
non-holonomic ground robots. We propose a local RRT*-
based path search algorithm to constantly generate a path
from their current pose to a predicted goal pose. The haptic
feedback combines obstacle avoidance and collision avoid-
ance feedback. Obstacle avoidance guides the user along the
safe RRT* path around the obstacle, and collision avoidance
feedback helps steer the robot away from the obstacle. We
evaluate the performance of our algorithm with a virtual pilot
in simulation and experiments with a Sparkfun Jetbot, and
demonstrate human-in-the-loop capabilities with a Geomagic
Touch. The main contributions of this paper are:
• A haptic guidance algorithm for collaborative teleop-

eration of ground robots, which combines collision
avoidance and obstacle avoidance feedback;

• A non-holonomic RRT*-based path search;
• Analysis of the proposed algorithm to guarantee colli-

sion avoidance with obstacles; and
• Simulations and hardware experiments with a virtual

pilot and human using a Geomagic Touch haptic device.

Related Work

Our work is relevant to the field of haptic shared control
for autonomous vehicles. Following the dichotomy of [9],
this work relates to other haptic guidance systems, where
the human operator receives feedback to improve the safe
operation of the vehicle. Other approaches include: haptic
shared autonomy, which improves agreement between the
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human operator and autonomous safety controls [7]; bilateral
shared control with haptic feedback [10]; and persistent
monitoring with human reshaping of trajectories [11].

In cluttered environments, haptic feedback is useful for
collision avoidance, where feedback encodes a repulsive
force from obstacles for drones [12], [10] and non-holonomic
ground vehicles, such as wheelchairs [13], [14]. While these
solutions inform the user to avoid the obstacle, they do not
tell the user how to maneuver around the obstacle. Other
studies use haptic feedback to help the operator steer the
robot along a desired path. The authors of [15] proposed
a haptic device to provide vibrotactile and force feedback
based on the distance from a teleoperated surgical needle to
a target. In [16], a holdable haptic device guides the user
along a predefined 3D virtual path.

Few studies implement haptic feedback for both collision
avoidance and guidance to a target. An assisted control
scheme in [17] “haptically” guides the user through their
environment while accounting for the kinematic constraints
of a wheelchair, but must stop completely when encountering
obstructions to switch control schemes. In [18], a haptic
control scheme provides collision avoidance via a potential
field approach, and obstacle avoidance wherein the robot
follows tangential vectors of elliptical contours surrounding
each obstacle. Virtual Fixture Based Dynamic Kinesthetic
Boundary (VFDKB) planning for unmanned aerial vehicles
(UAVs) provides force feedback for both collision avoid-
ance and obstacle avoidance [19]. The virtual fixture (VF)
provides obstacle avoidance by guiding the user along a
safe path to a predicted user goal. The dynamic kinesthetic
boundary (DKB) ensures collision avoidance based on the
vehicle’s distance to obstacles and slows the vehicle to a
halt where necessary.

The aforementioned studies demonstrate the potential for
a system which provides haptic assistance for both collision
avoidance and obstacle avoidance. Prior studies have not
fully explored haptic feedback for safe co-navigation of
non-holonomic vehicles along a smooth path to a predicted
goal. In contrast, our work provides an in-depth, mathemat-
ical performance analysis for both collision and obstacle
avoidance feedback, with detailed simulations and human
demonstrations for such work. Our work aims to meet the
need for a collaborative haptic guidance system that assists
the user in both collision avoidance and navigation to their
goal. Unlike many proposed shared autonomy systems, our
approach does not override the human, but rather helps
the human maintain a safe state by avoiding collisions and
suggesting safe paths to the predicted goal. And unlike
many haptic shared autonomy systems, such as potential
field based approaches, our proposed haptic feedback is not
always active, and we only provide necessary feedback. The
remainder of this paper is organized as follows: Section II
introduces our problem formulation. Section III describes
the path planning algorithm, and Section IV details how
we generate the haptic feedback. Section V contains a
performance analysis of the proposed algorithm. We present
simulation and experimental results in Section VI, and state
our conclusions in Section VII.

TABLE I
MAIN SYMBOLS AND NOTATION

qr = [xr,yr,θr]
T robot pose

q̇r = [ẋr, ẏr, θ̇r]
T robot velocity

q̇u = [vu,ωu]
T user velocity (steering) command

vr,ωr linear and angular velocities of the robot
f = [ fv, fω ]

T total haptic force applied to the user
fo, fc obstacle and collision avoidance forces
qg = [xg,yg,θg]

T predicted user goal
P suggested safe path for the user to follow
λp,λo distance from qr to P and to nearest obstacle edge
uc,uo unit vector corresponding to fc and fo
Q ∈R2 environment through which the robot navigates
k scalar constant to modify the magnitude of f
d obstacle detection radius
λ sf

obs safe distance from an obstacle
vmax,amax maximum velocity and acceleration of the robot
tahead =

vmax
amax

look-ahead time
∆t = ti+1− ti time step
R radius of the robot
λa distance to an obstacle at which fc is activated
Cact maximum distance from P such that fo is active
Cmin minimum distance from P such that fo is active
Cmax minimum distance from P at which fo is maximum

II. PROBLEM FORMULATION

In our collaborative system, a human user shares control
with an autonomous mobile ground robot. We assume the
human operator teleoperates the robot via a haptic device,
and force is fed back to the human as assistance in main-
taining safe, collision-free navigation towards a goal. Here,
we consider the teleoperation of a ground robot maneuvering
through a static two-dimensional environment with circular
obstacles. Consider an environment Q, with points in Q
denoted q. The robot at point qr can be modeled as a unicycle
robot, where xr and yr define the position of the center of the
wheels’ axis in the environment Q, and θr is the orientation
(heading angle) of the robot in the global frame. We define
the robot dynamics q̇r as a function of θr and user input q̇u:

q̇r =

cosθr 0
sinθr 0

0 1

 q̇u. (1)

We define the total haptic force f comprising two compo-
nents fo and fc as

f = k( fo + fc). (2)

Both fo and fc have the same structure as f , with linear and
angular components. One can think of fo as an attractive
force toward a safe path which guides the user around
obstacles, and fc as a repulsive force away from the nearest
obstacle.

Our path planner and propositions utilize an egocentric
polar coordinate system [20], [21] with state variables [r,δ ,φ ]
(see Figure 2). The robot dynamics in terms of the egocentric
polar coordinates are defined by[

ṙ
φ̇

]
=

[
−vr cosδ

vr
r sinδ

]
,

δ̇ =
vr

r
sinδ +ωr.

(3)
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Fig. 2. Egocentric polar coordinate system. r is the radial distance from qr
to the target pose qt , δ is the angle between the current heading and line of
sight, and φ is the angle between the target heading and the line of sight.

III. PATH PLANNER
To generate a suggested local safe path around obstacles,

and to ultimately determine the force fo, we propose an
RRT*-based path search algorithm for non-holonomic vehi-
cles. Prior studies have modified and implemented RRT* as
a real-time path-planning algorithm due to its computational
efficiency and its guarantee to find a path. We therefore mod-
ify the non-holonomic RRT* algorithm of [20] with control
law [21] to search for a safe path from the current robot pose
qr to the user goal qg while accounting for any obstacles, the
size of the robot, and the robot’s non-holonomic constraints.
For the purposes of our algorithm, and unlike prior work,
we plan paths for short intervals, continuously searching for
new paths as the human teleoperates the robot through Q and
new obstacles are detected.

Note that since fo is fed back to the user by the robot, the
robot must calculate the safe RRT* path. This requires that
the robot has knowledge of the surrounding obstacle sizes
and locations. We therefore introduce a detection radius d
and assume that once an obstacle enters the detection radius,
its size and location is known. We call these obstacles active,
and the local path planner computes a collision-free path
around active obstacles only. Assumption 1 emphasizes the
robot knowledge of the environment.

Assumption 1 (Robot Knowledge): The robot can detect
the size and location of obstacles within a radius d and
is responsible for planning a collision-free path using the
proposed local RRT* planner.

We also note that the human is not given any information
about the safe path generated by RRT* algorithm, as this
is only used by the robot to generate fo. When operating a
personal mobility platform such as a powered wheelchair, the
human operator must focus on their surroundings to ensure
safety while making high-level decisions. We therefore do
not wish to cause any distractions by showing them a visual
RRT* path to follow; rather, we provide force feedback to
steer the robot in a safe direction. Assumption 2 formalizes
that only the robot has knowledge of the RRT* path.

Assumption 2 (Human Knowledge): The human operator
has no knowledge of the safe path generated by RRT*.

We now proceed with our implementation of a non-
holonomic RRT* algorithm. To predict the user goal, q̇u is
assumed to remain constant for time tahead [12]. The user
goal qg is defined as

qg = q̇rtahead +qr. (4)

The non-holonomic RRT* algorithm is based on the work
of Park et al. [20], [21] and generates a safe path from qr to
qg while accounting for the set of circular active obstacles,

as well as the size and kinematic constraints of the robot.
Furthermore, the RRT* algorithm [20] is implemented in
egocentric polar coordinates with a non-holonomic distance
[21] and cost function

Dist(qr,qt) =
√

r2 + k2
φ φ 2 + kδ |δ −δ ∗|, (5)

where qt is a target node in the tree, kφ and kδ are scalar
constants set to 6.0 and 3.0, respectively, and δ ∗ is the
steering function defined as δ ∗ = arctan(−kφ φ).

We employ RRT* as a local path planner; however, as
the robot approaches an obstacle, the generated user goal
qg may end up inside an obstacle. Therefore, to search for
a path around the obstacle, we extend the user goal by
incrementally increasing tahead by ∆ until qg no longer lies
inside the obstacle. Additionally, we need to establish the
appropriate area in which the RRT* algorithm searches. We
therefore define the search area based off of the current pose
and predicted goal pose, expanding the xy search area by a
scalar ε , and the θ search area by scalar ψ . Both of these
methods are further described in Algorithm 1. Finally, in
order to account for the size of the robot, the RRT* algorithm
expands the size of the circular active obstacles by a distance
λ sf

obs such that the path generated will be at least λ sf
obs away

from any obstacle. Note, however, that λ sf
obs cannot be chosen

arbitrarily; in order to prevent collision, λ sf
obs > vmax∆t +R.

Algorithm 1 summarizes our use of the RRT* algorithm
with respect to the proposed force feedback algorithm. Algo-
rithm 1 runs as a single process on the robot, separately from
the Force Feedback Algorithm (Algorithm 2). It receives the
current qr, qg, and q̇r as inputs. It then extends the goal pose,
if necessary, and defines the local search area. Finally, it uses
this information to generate a new path Pnew using the non-
holonomic RRT* algorithm as in [20] and publishes the safe
path for use in Algorithm 2. If RRT* is unable to find a safe
path from qr to qg, even after qg is extended, then Pnew does
not exist; we discuss this case further in the Section V.

Algorithm 1 Local Path Planner: Non-Holonomic RRT*
1: Retrieve qr, qg, q̇r, and the set of active obstacles
2: while any active obstacle contains qg do
3: tahead+= ∆

4: Recalculate qg using (4)
5: end while
6: Compute the possible limits of the local search area

xrange = [xr− ε,xr + ε,xg− ε,xg + ε]
yrange = [yr− ε,yr + ε,yg− ε,yg + ε]

7: Set the local search area for RRT* algorithm
xsearch = [min(xrange),max(xrange)]
ysearch = [min(yrange),max(yrange)]
θsearch = [θr−ψ,θr +ψ]

8: Input qr, qg, q̇r, xsearch, ysearch, θsearch, and active obsta-
cles into non-holonomic RRT* algorithm from [20]

9: Retrieve and publish safe path Pnew

Algorithm 1 describes our use of the non-holonomic RRT*
algorithm [20] as a local path planner to the predicted
user goal qg. Given our implementation of RRT*, we can
introduce Remark 1 as follows.
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Remark 1 (Safe RRT* Path): If a safe path Pnew exists
from qr to qg, then Pnew does not collide with obstacles and
maintains a distance of at least λ sf

obs away from obstacles.

IV. HAPTIC FEEDBACK

For our collaborative teleoperation, a human operator co-
navigates with the autonomous robot. In complex environ-
ments, the robot relies on the human operator for high-level
decision making. In turn, the robot generates a suggested
safe path for the human operator given its knowledge of
obstacles. We propose a force feedback algorithm to assist
the human operator in safely navigating the robot through
the environment Q. The overall haptic feedback algorithm is
summarized in Algorithm 2, which loops until the process
is terminated. The force feedback implemented in this paper
pushes the human operator’s hand in a direction such that
the human will steer the robot in a safe direction.

The algorithm first retrieves the most recent safe path
Pnew published by Algorithm 1. Since Algorithm 1 runs
continuously, it is possible that the current path P is a better
path than Pnew; specifically, P may be shorter than Pnew. We
therefore introduce a check (lines 2-4) to ensure that the
optimal path is used to compute fo. In addition, we need
to ensure that P is still relevant in leading the user to qg.
We introduce this additional check in line 2, comparing qg
and the end point of P. Given the human user’s autonomy
outperforms the robot’s, P is a suggested safe path for the
user to follow, and the user may choose to overcome the
force feedback and follow a different path (for example, if the
human encounters a situation the robot does not understand).

Once P is defined, the algorithm receives q̇u, qr, and q̇r.
It then determines the current active obstacles, computes the
Euclidean distances to those obstacles and to P, and predicts
qg as in (4). This information is used in Algorithm 1. Then
it computes fo and fc and sends the total force feedback f to
the haptic device. This process is repeated until terminated.

Algorithm 2 Force Feedback
1: Retrieve most recent path Pnew from Algorithm 1
2: if length(Pnew) < length(P) or P irrelevant then
3: P = Pnew
4: end if
5: Retrieve qr, q̇r, q̇u, and set of active obstacles
6: Calculate λo, λp, and qg
7: Calculate fc(λo) and fo(λp)
8: Send total force feedback f = k ( fo(λp)+ fc(λo))

Algorithm 2 describes the process of determining the
forces to feed back to the user. The total force feedback is a
function of the obstacle avoidance force fo(λp) and the col-
lision avoidance force fc(λo). In the following subsections,
we provide further details about these two components.

A. Collision Avoidance Force

Similar to [22] and [19], our collision avoidance algorithm
implements a DKB-based approach to provide a repulsive

ωr

vr

fc fo

λa

λ sf
obs

(a)

ωr

vr

fc

qg

fo

λ sf
obs

(b)

Fig. 3. (a) Example of both fc and fo contributing to the total force vector
f to avoid the gray circular obstacle. fc is normal to the obstacle and serves
to push the robot away from the obstacle, while fo is normal to the path
and pulls the robot toward the safe path (green curve). (b) Example of a
scenario in which fc and fo cancel out. The red dotted line is the predicted
robot trajectory, leading to the predicted goal qg which must lie inside the
obstacle for f to be active. For the forces to cancel out, the safe path must
lie between the robot and the obstacle as shown, as fo must be perpendicular
to the path and drawing the robot toward the path.

force feedback away from obstacles. The DKB-based ap-
proach results in robust haptic feedback with reduced congi-
tive load and is preferred by users compared to potential field
based approaches [23]. For repulsive feedback, the primary
force feedback direction uc of fc is defined as the normalized
radial vector pointing from the nearest obstacle to the robot
(see Figure 3(a)). This vector is then scaled depending on
λo(t) such that the force feedback fc is

fc =

{
uc(t)(eλa−λo(t)−1), λo(t)≤ λa

0, λo(t)> λa
. (6)

The collision avoidance fc is constructed such that the
magnitude of force feedback increases as the robot nears an
obstacle. One can show that our proposed formulation for fc
is bounded above by eλa−1 and below by 0 (see Figure 4).

B. Obstacle Avoidance Force

The obstacle avoidance force was inspired by [19], [24]
and aims to restrict motion along the safe RRT* path,
generated by Algorithm 1, while providing the user with
information about the deviation from said path. Recall that
the RRT* path only serves as a suggested safe path for the
user, although the user does not have knowledge of the safe
path (Assumptions 1 and 2). Therefore, we wish to determine
the force required to “nudge” the user onto the safe path.

We first determine the nearest node on the safe path.
This is the node corresponding to the minimum Euclidean
distance to the robot. We then define the normalized vector
uo perpendicular to the path and pointing in the direction of
the robot (see Figure 3(a)). This serves as the primary force
feedback direction for the force component fo. We then scale
uo based on the distance λp(t) to the safe path such that the
force feedback fo is

fo =


uo(t)

(
eα(λp(t)−Cmin)−1

)
, Cmin ≤ λp(t)≤Cmax

uo(t)
(

eα(Cmax−Cmin)−1
)
, Cmax < λp(t)≤Cact

0, otherwise
(7)

where α = λa
Cmax−Cmin

. In this way, if the robot is already near
the safe path (i.e. within Cmin) or too far from the path (i.e.
farther than Cact), fo will not be applied. As the user steers
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Fig. 4. Force scaling for obstacle avoidance (red solid line) and collision
avoidance (blue dashed line). Note that both forces share the same bounds.

the robot farther from the safe path, the force magnitude
will increase exponentially but will be bounded when λp(t)
reaches Cmax. Furthermore, the force feedback fo is designed
in such a way that as the user moves farther from the path,
the magnitude of the force feedback will increase, and vice
versa. If Algorithm 1 cannot find a path to the predicted path,
and the most recent path Algorithm 2 receives is outdated,
then Cact serves to ensure fo does not push the robot to an
irrelevant path. One can show that the obstacle avoidance
force fo shares the same bounds as fc.

V. PERFORMANCE WITH A VIRTUAL PILOT
It is important to note that, in reality, it is possible that

the human operator may ignore the haptic commands and
choose to override the force feedback. For our analyses and
some experiments, we represent the human user as a PD con-
troller to generate the user’s steering commands. However,
in practice with a human operator, the PD controller plays
no part in the teleoperating task – the steering commands
are generated solely from user input, and the start and goal
poses are unknown to the robot. We will assume that the
virtual pilot is a “reasonable human” (Assumption 3). In
other words, we assume that the user follows any and all
force feedback commands, hence the total steering command
(9). Assumption 3 allows us to explore the behavior of the
robot as a response to the force feedback provided.

Assumption 3 (Reasonable Human): The human follows
the force feedback commands provided by Algorithm 2 such
that the total velocity of the robot is defined by (9).

To evaluate the performance of our algorithm, we represent
the user as a simple PD controller as in [12], [25], [26]. This
virtual pilot has no information about the obstacles, and its
only ability is to steer the robot from a predefined start pose
to a predefined goal pose. Given q̇u(ti) from the virtual pilot
and the force feedback f (ti), the new qr at time ti+1 is

qr(ti+1) =

cosθ(ti) 0
sinθ(ti) 0

0 1

 q̇tot(ti)∆t +qr(ti), (8)

where
q̇tot(ti) = q̇u(ti)+ f (ti). (9)

We use this model to evaluate the performance of our
proposed approach. In the following analyses, we consider
the virtual pilot (PD controller) steering the robot through
a locally smooth environment with bounded curvature and
continuously differentiable obstacles.

We first evaluate the boundedness of the force feedback.
We noted in Section IV that fc and fo are bounded, and thus
the total force feedback f is bounded when these components
are active alone; i.e. when one of the forces is 0 and the other
is not. In Lemma 1 we prove that the total force feedback is
bounded when both forces are active.

Lemma 1: Consider the force feedback in which both fc
and fo are active. Thus, λo ∈ [0,λa] and λp ∈ [Cmin,Cact].
Then the total force feedback f is bounded.

Proof: The total force with the given inputs is

f = k
(

uc(eλa−λo(t)−1)+uo(eα(λp(t)−Cmin)−1)
)
. (10)

With the given inputs, the upper and lower bounds occur
when the two forces are parallel. Thus, f is bounded from
above when the two forces are in the same direction by

k
(
(eλa −1)+(eα(Cmax−Cmin)−1)

)
= 2k(eλa −1), (11)

and from below when the two forces are opposite by 0.
Next, we consider the unlikely scenario in which the two

force feedback components fc and fo cancel out. Such an
instance could happen if the vectors uc and uo are pointed
in opposite directions, and if fc and fo have the same
magnitude. Proposition 1 claims that if this happens, the
robot cannot collide with the obstacle.

Proposition 1: In the case where fc =− fo, the robot will
not collide with an obstacle.

Proof: The proof follows the schematic of Figure 3(b).
Assume fc = − fo at time ti, then fc and fo have the same
magnitude and act opposite one another. Note that, since fc
only acts normal to and outward from the obstacle, then fo
can only be opposite when it acts normal to and toward the
obstacle. Thus the safe RRT* path from Algorithm 1 must
lie between the robot and the obstacle (Figure 3(b)).

Given Remark 1, and since fo is active, a safe path exists
around the obstacle which is at least a distance of λ sf

obs away
from the obstacle edge. Since the safe path is between the
robot and obstacle, then λo(ti)≥ λ sf

obs.
We can also assume that, since Algorithm 2 calculates fo

based on the most recently generated local path, and given
Assumption 3, then the current pose, particularly the heading
angle, is approximately the same as that generated by the safe
path. Therefore, the robot velocity vector must be roughly
perpendicular to fc and fo, as in Figure 3(b).

Suppose the robot moves toward the obstacle at time ti
when the forces cancel, following a path similar to the red
dotted line in Figure 3(b). Then the robot will move closer
to the safe path, decreasing fo, and closer to the obstacle,
increasing fc, at time ti+1. Then, fc > fo at time ti+1, which
will prevent the collision with the obstacle.

Proposition 1 claims that a cancellation in fc and fo cannot
cause collisions with obstacles. To evaluate the ability of
Algorithm 2 to follow a safe RRT* path, we consider the case
where only the obstacle avoidance component fo is active,
and fc = 0. In Proposition 2 we evaluate the path following
performance by evaluating the tracking error λp(t).

Proposition 2: Assume no collision avoidance force fc
and a safe RRT* path P exists to the predicted goal (Remark
1). Assume also that λp(t) ∈ [Cmin,Cact]. Then the force
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feedback f = k fo decreases the tracking error in reference
to the safe RRT* path.

Proof: Recall the egocentric dynamics (3). Let qt be
the nearest node on the RRT* path to the robot, and define
the tracking error as the distance r from the robot to the path,
as in Figure 2. The tracking error r decreases if and only if
ṙ < 0. From (3),

ṙ =−vr cosδ . (12)

We will observe ṙ in two possible cases based on the
orientation of the robot with respect to the safe path.

Case 1: δ (t) ∈ (−π
2 ,

π
2 ). In this case, the robot is oriented

toward the path, and we can assume that the vector f is
oriented in approximately the same direction as r (i.e. f ≈ r).
Therefore, the total velocity from (9) is

vr = vu + k‖ fo‖, (13)

where ‖ fo‖ is the linear component of fo. Given Assumption
3, vu = ‖q̇u‖ = 1. Plugging (13) into (12), we obtain ṙ =
−(1+ k|| fo||)cosδ . Since 1+ k fo > 0 and cosδ > 0, then
ṙ(t)< 0 ∀t such that f = k fo and δ ∈ (−π

2 ,
π
2 ).

Case 2: δ (t) ∈ (−π,−π
2 ] or δ (t) ∈ [π

2 ,π). Assuming f ≈
r, then f results in a negative linear velocity with respect
to vr. Thus vr = vu− k‖ fo‖. Then (12) becomes ṙ = −(1−
k‖ fo‖)cosδ . Since cosδ < 0, we observe that ṙ < 0 when
1− k

(
eα(r−Cmin)−1

)
< 0. This happens when

r >
1
α

ln
(

1+ k
k

)
+Cmin. (14)

Thus, when the robot is oriented away from the path,
the tracking error will begin decreasing when the distance
reaches that defined in (14). Furthermore, when f = k fo and
given Assumption 3, the maximum distance the robot can
move from the path is given by (14).

Proposition 2 shows that the obstacle avoidance force fo
will guide the user toward the safe path. We now consider
the case where Algorithm 1 cannot find a safe RRT* path
to the user goal and thus the path P does not exist, e.g.
the predicted user goal lies on the other side of a wall. In
such a case, fo = 0 and Algorithm 2 will rely solely on
the collision avoidance force fc. Proposition 3 shows that
although the goal is unattainable, the proposed algorithm will
prevent collisions with the obstacle.

Proposition 3: Assume an initial condition of λo(t) ∈
(λ sf

obs,λa] such that f = k fc. Then for all t > 0,

λo(t)≥ λa− ln
(

1+ k
k

)
, (15)

where
k >

1
eλa −1

. (16)
Proof: Recall the egocentric polar coordinate system

shown in Figure 2 and described by (3). Let the target pose
qt be the nearest point on the edge of the nearest obstacle.
Then r is the distance between the robot and obstacle edge.
We will consider two cases based on the orientation of the
robot with respect to the obstacle and determine the distance
r at which the robot no longer moves toward the obstacle
(i.e. when ṙ(t) = 0).

Case 1: δ (t) ∈ [−π
2 ,

π
2 ]. In this case, the linear velocity vr

of the robot is oriented toward the obstacle, while that of
the force feedback f is oriented opposite the robot velocity,
since f points normal from the obstacle. Therefore, the total
velocity of the robot can be described by

vr = vu− k‖ fc‖. (17)

Given Assumption 3, vu = ‖q̇u‖ = 1. Then plugging (17)
into (12), we obtain ṙ =−(1− k‖ fc‖)cosδ . We observe that
ṙ = 0 either when δ =±π

2 , or when 1−k(eλa−r−1) = 0. By
solving for r, we can conclude that ṙ = 0 when

r = λa− ln
(

1+ k
k

)
. (18)

Case 2: δ (t) ∈ (−π,−π
2 ) or δ (t) ∈ (π

2 ,π). In this case,
both vr and f are oriented away from the obstacle. Thus, the
total velocity becomes

vr = vu + k‖ fc‖. (19)

Given the same assumptions as in (i), then ṙ =
−
(
1+ k(eλa−r−1)

)
cosδ . Solving for r, we observe that

ṙ = 0 only when r = λa− ln
( k−1

k

)
. Note that this distance

is greater than the minimum distance calculated in Case
1. Therefore, the minimum distance between the robot and
obstacle is given by (18) when f (t) = k fc(t) ∀t.

Although it is possible for r < 0 in (18), the positive
constant k cannot be chosen arbitrarily. Rather, k should be
selected such that r > 0 ∀t while accounting for the size of
the robot. We can set r > 0 in (18) and solve for k to obtain
(16). Thus, although (18) can be negative, by (16) it will
always be positive, resulting in a collision-free configuration
∀t > 0, proving the claim of the proposition.

Propositions 1-3 showed that given a collision-free initial
condition, our approach will prevent any collisions with
obstacles in a locally smooth environment with continuously
differentiable obstacles and appropriately selected constants.

VI. EXPERIMENTS

We conducted a series of virtual pilot simulations and
hardware experiments, and performed human-in-the-loop
demonstrations with the haptic device, to demonstrate
collision-free navigation to the goal under the haptic feed-
back. We implemented our algorithm using Robot Operating
System (ROS), with a desktop computer (8-core, 32GB
RAM, Ubuntu 20.04) running Algorithms 1 and 2 in Python.
Algorithm 1 generated RRT* paths every 300 to 600 ms, and
Algorithm 2 updated the force feedback at an average rate
of 300-400 Hz. Assumptions 1-3 hold for the virtual pilot
experiments in Subsections VI-A and VI-B, and Assumptions
1 and 2 hold for the human experiments in Subsection VI-C.
Experiments and animated simulations with suggested paths
can be found in the supplemental video for the environment
shown in Figures 5(a) and 6(a).

A. Virtual Pilot Simulations

We implemented the virtual pilot controller from Section
V as a proxy for a human user. The virtual pilot has no
information about any obstacles, and its only purpose is to
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(a) (b)

(c) (d)

Fig. 5. Simulation (blue) compared with the PD-controlled robot (red) and
human-controlled robot (green) experiments for two selected environment.
(a) and (b) show the trajectories of the robot navigating through the two
environments under each condition from the blue · to the red ×, with the
proposed algorithm providing force feedback, represented by arrows, to
avoid obstacles. (c) and (d) show the respective force magnitude applied
over time.

steer the robot from the start pose to the goal pose. We
performed 100 simulations and recorded (i) the minimum
distance to any obstacle and (ii) the minimum distance from
the goal for any trial. For each trial, we randomly generated
a start and a goal pose and five randomly positioned and ran-
domly sized obstacles. Start and goal poses were restricted
to be at least a distance of λa away from any obstacle to
ensure that the robot reached its goal. Additionally, the five
obstacles were generated such that they did not overlap one
another. Across all 100 simulations, the minimum distance
to an obstacle was 0.19, and the maximum distance from
the goal was 0.25, which was the distance at which the PD
controller terminated. We conclude from these simulations
that for all 100 trials, the robot was able to reach its goal. Our
algorithm also satisfied (15) for λa = 0.4 and k = 3.0, and
thus λo(t) > R ∀t, confirming that the robot never collided
with an obstacle.

We then selected two randomly generated environments
which we believed to be challenging. In Figure 5, we present
simulations with the virtual pilot through the two environ-
ments. The trajectory of the robot under the haptic feedback
is shown in blue in 5(a) and 5(b), and the corresponding force
magnitude applied to the virtual pilot is shown in 5(c) and
5(d). Results are shown alongside those from hardware-in-
the-loop and human-in-the-loop experiments for comparison.

B. Virtual Pilot + Jetbot

To ensure our algorithm could be implemented in hard-
ware, we performed experiments with the virtual pilot on
the SparkFun Jetbot v2.01, powered by the NVIDIA Jetson
Nano2. The desktop computer sent steering commands (9) to
the robot via WiFi. An Optitrack Motion Capture (MOCAP)
system3 provided position and orientation data. Results are

1www.sparkfun.com
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit
3https://optitrack.com/

(a) (b)

(c) (d)

Fig. 6. Human teleoperation experiments in three cases: visual feedback
+ haptic feedback, visual feedback without haptic feedback, and haptic
feedback without visual feedback. (a) and (b) show the trajectory of the
robot navigating from the blue · to the red ×, with the proposed algorithm
providing force feedback, represented by arrows, to avoid obstacles. (c) and
(d) show the respective force magnitude over time.

shown in Figure 5 in red, where we observe similar results
to the simulations.

C. Human Pilot Demonstration

An experimenter tested the proposed algorithm with a
haptic device, the Geomagic Touch4, to observe the forces
applied to a human pilot. We navigated the Jetbot through
the MOCAP space using the Geomagic Touch while standing
outside the environment, such that we had an imperfect third-
person view of the robot and projected environment shown in
Figure 1(a). The position of the end effector on the Geomagic
Touch was mapped to linear and angular velocity commands
sent to the robot as f , with forward (back) positions mapping
to positive (negative) linear velocity vu, and left (right)
positions mapping to positive (negative) angular velocity ωu.
The computer sent haptic feedback (2) to the Geomagic
Touch using the same mappings, such that the operator’s
hand was pushed in a direction that steered the robot in a
safe direction, resulting in collaborative navigation.

We performed experiments in the same two environments
as the previous subsections under three conditions: (i) visual
feedback only, (ii) visual feedback + haptic feedback, and
(iii) haptic feedback without visual feedback. The results for
these experiments are shown in Figure 6, and case (ii) is
shown alongside the virtual pilot experiments in Figure 5.
We observed results similar to the virtual pilot experiments,
with force feedback applied to the human more frequently
than the virtual pilot, a result of the human taking longer to
react to the force feedback compared to the virtual pilot.

From Figures 6(c) and 6(d), we observe little high-
frequency, noise-like forces applied by the haptic device to
the user during operation. Such forces are known as buzzing
and can result in perceived instability [27]. However, because
the purpose of our algorithm is co-navigation, rather than
haptic perception, we consider minimal buzzing acceptable

4https://www.3dsystems.com/haptics-devices/touch

8147



for our applications, and we can furthermore conclude that
an update rate of 300-400 Hz is sufficient.

VII. CONCLUSIONS

In this paper we present a novel haptic guidance system
to help human users co-navigate a ground robot through a
remote environment. Our proposed algorithm provides force
feedback for both collision avoidance and obstacle avoid-
ance. The collision avoidance force applies force feedback
away from an obstacle, while the obstacle avoidance force
applies feedback toward a safe path generated by a local non-
holonomic RRT*-based algorithm. We present performance
analyses for our algorithm and demonstrate its performance
through a series of simulations, hardware experiments, and
human pilot demonstrations. Unlike prior work in the lit-
erature, we present thorough mathematical analyses of our
performance with a virtual pilot, and demonstrate that the
user need not have information about obstructions in order to
safely reach their goal. Our algorithm also grants the human
full control of the robot. Our results show that the proposed
algorithm could be a useful and collaborative teleoperation
system for ground robots.

Future work will include further evaluation of the proposed
algorithm through user studies, particularly studying the
ability to co-navigate a robot through complex environments,
as well as the effect of buzzing on user experience. Future
work can also implement more sophisticated methods for
predicting the user goal, such as Bayesian [28] or machine
learning [29] methods. Increasing the accuracy of the user
goal will improve the user experience and theoretically pre-
vent disagreements between the human and force feedback
algorithm.
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